SOLUTIONS OF INTEGRAL EQUATIONS OF TRANSPORT
THEORY IN THE GREEN-FUNCTION FORMALISM
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The uniqueness of solutions of some integral equations of transport theory is analyzed for a
specific shape of the kernels of these equations.

§1I. Methods of determining the scattering amplitudes of several quantum-mechanical particles were
developed in great detail in recent years. These methods are based on Fredholm integral equations of the
second kind, described in the Green-functionformalism. The systems of integral equations obtained in this
formalism are equivalent to the Lippman - Schwinger equation [1], formally generalized to an N-body system
under the assumption of two-particle forces. The uniqueness and equivalence, however, of the solutions of
these systems of equations to the solution of the corresponding Schridinger equation was not proved,

In the present paper examples are given for which in the case of scattering of four or more particles the
homogeneous integral equation for the scattering amplitude, obtained by the Green-functionmethod, has an in-
finite number of solutions, and, consequently, the inhomogeneous equation also has an infinite number of solu-
tions.

Consider first the Lippman —Schwinger equation for the four-body problem, when two independent pairs
of particles (12) and (34) interact through the potentials V,, and Vg, respectively [2]. This equation is [1]

T@)=Vy+Va)+ Vi + V) G (2T (2), (1)

where T(z) is the particle scattering operator in the system, G;(z) is the Green function of free motion of four
particles, and z is the total energy of the system.

It is well known that for this problem the Schridinger equation has a unique solution, written as follows
in terms of the scattering operators:

T(2') = by, (245) + L3 (259) + £33 (20) @ b, (23), 2

where t;,(zy,) and ty(z5) are the scattering operators of particle pairs (12) and (34), respectively; z;, and zg,
are the particle energies of relative motion in the syst ems of particles (12) and (34); 2'=2-2;y 3, Z2' =Zyy+ Z3y,
Zy9 g are the energies of relative motion of the two systems of particles (12) and (34); and the sy'mbol ® de-
notes a product of scattering operators. We point out that due to the absence of particle exchange between the
systems (12) and (34), each of the energies z and zg, is conserved in the scattering process.

To write down the integral equation for the amplitude of particle scattering in the system it is necessary
to determine the vectors of initial and final states in the four-particle system. For this purpose we use the
Jacobi coordinates in the momentum representation. The vectors of initial and final states of the four free
particles can then be written in the form

<k, kg, Kiz,3s,  [kiz, kas, Kiz,36> »

respectively. Herek, and k', are the momenta of relative motion of particles in the system () prior to and
following scattering, and kyy 3, and ki, 4 are the momenta of relative motion of the systems (12) and (34) prior
to and following scattering. In this case

2, = Bi2/Qyn; 240 = K34/20ass 212,34 = ki2,34/ 212,24,
where p is the reduced mass of particles in systema, and p gy g, is the reduced mass of four particles.

In these coordinates the matrix element of the operator T(z) in (1) is diagonal in the variable kyy 3

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 1, pp. 145-149, July, 1978. Original
article submitted June 28, 1977.

0022-0841/78/3501-0863 $07.50 © 1979 Plenum Publishing Corporation 863



<Ky Kags ki2,34T (2) K12, Kaso Kiz,38 >=<kyp kay|T(Z) k12, Kss>08(k12,36 —Kiz,34)-

We use a model [3] in which an integral equation is written down for the matrix element of the many-particle
scattering operator. In this model the matrix element of the kernel of Eq. (1) is

<k, kaulV G0 (2) Qipy Qe > = <kpplVialgio™> (25— ‘7%2/ 2y + i1y 8 (Kag — Qaa)- 3)

One can then write, on the basis of (1), an integral equation for the amplitude <kjy, kg [T(z') |k},, ki, > at the
energy surface in the form

<Ky, ksdlT () ki, kst > = (20)* < kyolV ol iz > 6 (kg — Kse) + (2m)° << ksqlVaal kas > 8(ky, — ki) +

dq,, <k {Vil g >

(2m)® 2" — k34/2, — Gio/2yy + 00
+ j <Ky Vs 105 >
(21)3 2 —kiy/ 2y, — 54/, + i0

<kg [T (2) | kiz, kae>+

<ki QulT (2')k1z, kse>. (@)
We note that the denominators in the integral terms of Eq. (4) can be written in the equivalent form

2 — k§4/2Mu - 4%2/2%2 = kis/2yy— gi2/24, -+ 10,
2" — ko2, — q34/20, = R34/2y — Gaa/2gg + 00,

We investigate Eq. (4) for the case in which the potentials are separable [2] and the particle masses are
equal:

B —G .
<k [Viglkiz> = —2;; &8 (ky) g (k12),

. -0 , .
<kg Valkse > = —2‘}‘; @ (k) 0 (R3q) (5)

{the constants G and Q, as well as the functions g(k) and w (k), are assumed real, which guarantees potentials
being Hermitian]. The pair amplitudes are hence also separable:

) . G - G dq g2 (q1)
K 14 (B2 /) k1o = = — —— g (£ b 142 12 w
<Kyy | 415 (R12/2) k12 oM g (k) g (Ry2) { + > @) Foaf2n — qia/2 o i0
. Q . Q dq 2 (Gy;)
2.2 =—— o(ky) 0 (k 34 3% . (6)
< kg, lt3, (Ras/2) ks > o0 0 (ky,) @ (R34) [ + 2 5‘(23)3 PN S

Relationships (6) form the analytic solution [2] of the corresponding Lippman—Schwinger integral equations.
We introduce the following notation, which will be required in the sequel:

dqy, g2(g) ,

(23‘!)3 k12/2p, —_ q12/2y, + i0

©* (¢s4)
b 2p) = —
(k3s/2p) j‘ (270 k24/20 — g34/2u + i0

a (kl2/2“') = =

)

Obviously, the pair amplitudes (6) exist if the following conditions are satisfied;
1+ a(kh/2m) =0, 14 b(k3,/20) =0. ()
We write down the homogeneous equation corresponding to expression {(4):

dq,, <kplVla,>
2n)3 kia/20— gi2/2n + i0
dqg, << Ky [Vl Qo =
(@m)°  k3s/2n —q34/2 -+ iO

Since the potentials are assigned by relations (5), and the energies z,, and zg, are conserved, the solution (9) is
of the form

<Ky koo|T(2') 1 k12, ksa > =f ( < Qi kg IT(2') Ki2, k3s>-+

<G kplT (2) K12, k34> (9)
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<k kT (2) ki, ks> = g (ko) g (ki2) @ (kyy) © (kas) F (2), (10)
2 =2y 2y, 2= k228, 2, = k3,/0,
if conditions (8) are satisfied.
Substituting (10) into Eq. (9), the following equation is obtained for the function F(z'):
F(2')[1 + a(zy) + b(z;9)] = 0. (11)

It is seen from (11) that the homogeneous equation (9) can have an infinite number of solutions [F(z') is an arbi
trary function] if the following condition is satisfied:

[+ a(zy) + 02 =0. (12)

This implies that the inhomogeneous equation (4) also has no unique solution if condition (12) is satisfied.

A necessary and sufficient condition for the existence of a unique (trivial) solution of the homogeneous
equation (9) follows from Eq. (11):

11 4 a(2) + b (250150, (13)
ifil+a (g =051 +b(zgy) = 0.

§I. We further show that a class of separable potentials can be found with parameters for which condi-
tion (12) is satisfied for the physical energy region z'=E +i0. For simplicity we assume that kj,=kg =n, z'=
2 .
¥/ +10,

Our problem is to find examples of potentials for which the condition 1+ a(®) +b(®) =0, where

a(x) = ?G_j da_ ilCI N
w 2n)®  w3/2u — g2/2u 1 0

(14)
b= 2 [ B¢
2u ) (@n)®  %22u—g?/2u 4 i0
According to the Sokhotskii equation, the following representation can be obtained for a(®) and b{x) from (14):
a(x) =a(x) -+ B (%), b(e)=8(%)+ ip(x), (15)
where
_ C . 4°8%) . (16)
00 Gap S g
"1
= o Gr2g? (%), a7
B () in *°2g% (%)
Q (. @) .
6(x)=——2;2— VPSdQ—};:q—z ; (18)
@ (%) = — i— Qn2w? (). 19
4n :

To satisfy the condition 1 + a(v) +b{(®) =0, it is necessary to require that

—B)=o(x) 1+0a(x)+80)=0. (20)
These conditions automatically guarantee the existence of nontrivial solutions of Eqs. (9) for real G and @, i.e.,
Hermitian potentials (7).

Let, for example, the functions g(q) and w (q) be

g(q)=7]§§q—z , o) = n}{:qz . (21)

Calculations of the integrals in (16)-(19) show that for certain relations between the parameters A, 1 and the
system energy ®%/u conditions (20) are satisfied.
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We have thus shown that for a given separable potential of the form (21) an energy value is found for
which the homogeneous equation (9) has an infinite number of solutions. Hence, the corresponding inhomo-
geneous equation (4) also has an infinite number of solutions.

We point out that the satisfaction of condition (12) for separable potentials leads to the result that the
system of integral equations derived from the operator equations [31,

T12(2') = by (210) + 13 (210) Gy (2') T3 (2'),
T34 (2') = t34(230) + 154 (25) Go (2} T 5 (2")s
where

Tp(2)+ Ty (2)y=T()
and T(z') satisfies Eq. (2), has the same properties as does the original equation (1). The corresponding homo-
geneous system can have an infinite number of solutions, and the inhomogeneous system can have an infinite
number of solutions or be incompatible. The results of this study can be generalized to the scattering problem
of five or more bodies under the assumption of pair interactions.

LITERATURE CITED

1. B. Lippman and J. Schwinger, Phys. Rev., 79, 469 (1950).
2. Y. Yamaguchi, Phys. Rev., 95, 1629 (1954).
3. L. D. Faddeev, Three-Body Problem in Nuclear and Particle Physics, North-Holland (1970), p. 154.

GENERALIZATION OF SOMMERFELD HEAT-CONDUCTION
PROBLEM FOR A RING i

I. R. Vengerov UDC 536.241

A solution is obtained for the problem of heat conduction in a one-dimensional ring consisting
of two sections with different lengths, heat sources, and thermophysical parameters,

The problem of the heat conduction in a ring [1] is an example of a boundary-value problem in which there
are no boundary conditions of the first, second, and third kinds modeling the effect of the external medium on
the system. In view of the symmetry of the problem, these conditions are replaced by the periodicity condition
for the solution. Such "self-closed" systems may serve as mathematical models of different processes of heat
and mass transfer [2, 3].

§1. Consider the problem of determining the temperature field in a one-dimensional composite ring, the
n sections of which have different lengths, thermophysical parameters, and heat sources. Any of the sections
may be regarded as a system interacting with its "environment" — the other sections, The initial temperature
distribution in the different sections of the ring is described by different functions and is discontinuous at the
contact points, where boundary conditions of the fourth kind are assumed. Since a one-dimensional problem is
considered, the shape of the ring is unimportant, as in [1]. A linear coordinate x; is infroduced for each section,
xj€ (0, lj), i=1, 2, ..., n. The mathematical formulation of the linear heat-conduction problem for a composite
ring takes the form

6Ti az‘?‘-‘i i
T—ai—ag B fz—}—tp,ﬁ(t), t>01 xiE(O) li)’ (1-1)
T, =0T 0, Fi=O®Fi (i 0 @ =Moo
de L, t>0
Pi P; (xz)’ 6(t) dt () {0’ t<0’
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